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Abstract. We study a confined mixture of bosons and fermions in the regime of quantal degeneracy, with
particular attention to the effects of the interactions on the kinetic energy of the fermionic component.
We are able to explore a wide region of system parameters by identifying two scaling variables which
completely determine its state at low temperature. These are the ratio of the boson-fermion and boson-
boson interaction strengths and the ratio of the radii of the two clouds. We find that the effect of the
interactions can be sizeable for reasonable choices of the parameters and that its experimental study can
be used to infer the sign of the boson-fermion scattering length. The interplay between interactions and
thermal effects in the fermionic kinetic energy is also discussed.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
67.40.Db Quantum statistical theory; ground state, elementary excitations –
67.40.Kh Thermodynamic properties

1 Introduction

The achievement of Bose-Einstein condensation in
trapped gases [1–3] has opened new opportunities for in-
vestigating the low temperature behaviour of dilute quan-
tum systems. Recent experimental studies have been also
addressed to the search of degeneracy effects in Fermi
gases [4,5] and in mixtures of bosons and fermions [6].
First experimental evidences of these effects have been
recently reported in [7]. Due to the Pauli exclusion princi-
ple the effects of the interactions in a Fermi gas are much
weaker than for a Bose condensate [8–13]. Therefore, the
kinetic energy dominates the behaviour of the Fermi gas
and is a clear indicator of its quantum degeneracy.

Interest in boson-fermion mixtures is stimulated by
the fact that, whereas in a one-component spin-polarized
Fermi gas the absence of interactions leads to long ther-
malization times which hamper the process of evaporative
cooling, the collisions between the two species in a mixture
can ensure fast thermalization (the so-called sympatethic
cooling [14–16]). The kinetic energy of the Fermi compo-
nent in such a mixture could be measured by time-of-flight
techniques in an ideal experiment in which the confining
potential is suddenly switched off after a fast expulsion
(i.e. on a time scale shorter than the boson-fermion col-
lision time) of the bosons from the trap. In this way one
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can avoid the effects of the interactions during the expan-
sion of the gas. Alternatively, the kinetic energy could be
obtained from inelastic photon scattering at high momen-
tum transfer as recently shown in the case of a trapped
Bose gas [17].

In this paper we analyze the behaviour of the kinetic
energy of the fermionic component in a boson-fermion
mixture. We find that the kinetic energy can be signifi-
cantly affected by the interactions of the Fermi gas with
the Bose-Einstein condensed cloud for reasonable choices
of the system parameters. An important consequence of
this purely quantum effect is that one can measure the sign
and the strength of the boson-fermion scattering length by
using the Bose component as a tunable device to change
the effective potential felt by the fermions [18]. We assume
a positive boson-boson scattering length, with a view to
applications to mixtures of Rb–K and Na–K.

2 Interacting Fermi-Bose mixtures

For the description of the mixture at finite temperature
we adopt the semiclassical three-fluid model already devel-
oped in reference [19]. We consider a system ofNf fermions
of mass mf and Nb bosons of mass mb confined by exter-
nal potentials V f,b

ext (r) = mf,bω
2
f,br

2/2 with frequencies ωf

and ωb. The external potentials are assumed to be spher-
ically symmetric, the asymmetric case requiring simply
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a change of variables in the framework of the semiclassi-
cal approximation that we adopt. We include the inter-
action between bosons through the scattering length abb

and the interaction between bosons and fermions through
the scattering length abf . By assuming that a single spin
state is trapped for each component of the mixture, we
can safely neglect the fermion-fermion interaction which
is inhibited by the Pauli exclusion principle. Extensions
to multi-spin configurations can be naturally made within
the present formalism. In the following we will neglect the
possibility of a superfluid phase for the fermionic compo-
nent (for a discussion of the BCS transition in trapped
Fermi gases see [20,21]) as well as the possibility of the
expulsion of the bosons from the center of the cloud (this
phase separation is expected to occur only for values of
the coupling strengths such that the mean field contribu-
tion of the fermions is comparable with the mean field
contribution of the bosons. This requires values of the pa-
rameters such that nfa

3
bb ∼ 1. The resulting system is no

more a dilute one, see [22,23]).
The spatial densities of the condensed bosons (nc), of

the bosonic thermal component (nnc) and of the fermions
(nf) are determined by the self-consistent solution of the
following equations:

nc(r) =
1
gbb

(
µb − V b

ext(r)− 2gbbnnc(r) − gbfnf(r)
)
, (1)

nnc(r) =
∫

d3p

(2π~)3

×
(

exp

[
β

(
p2

2mb
+ V b

eff(r) − µb

)]
− 1

)−1

(2)

and

nf(r) =
∫

d3p

(2π~)3

×
(

exp

[
β

(
p2

2mf
+ V f

eff(r) − µf

)]
+ 1

)−1

. (3)

Here, the effective potentials acting on the thermal boson
cloud and on the fermions are given by

V b
eff(r) = V b

ext(r) + 2gbbnc(r) + 2gbbnnc(r) + gbfnf(r)
(4)

and

V f
eff(r) = V f

ext(r) + gbfnc(r) + gbfnnc(r), (5)

where we have introduced the notations β = (KBT )−1,
gbb = 4π~2abb/mb and gbf = 2π~2abf/mr with
m−1

r = m−1
b + m−1

f . The chemical potentials µb and µf

are determined by the normalization conditions Nb =∫
(nc(r) + nnc(r)) d3r and Nf =

∫
nf(r) d3r, which ensure

the self-consistent closure of the model.

Equations (1–5) have been derived from a grand-
canonical Hamiltonian in which the interactions are in-
cluded in a mean-field Hartree-Fock approximation [24],
by employing the semiclassical approximation for the
bosonic thermal cloud and for the fermions and by taking
the strong coupling limit Nbabb/aho � 1 for the wave-
function of the condensate, with aho = (~/mbωb)1/2 the
bosonic harmonic oscillator length. Upon averaging the
Hamiltonian on the equilibrium state of the system at
finite temperature we obtain the energy as the sum of
various contributions: the kinetic and the external confine-
ment energy for each of the species, as well as the boson-
boson and boson-fermion interaction terms. One has

E = Ef
kin +Ef

ext +Eb
kin +Eb

ext +Ebb
int +Ebf

int

=
3
2

( mf

2π~2

)3/2

β−5/2

∫
f5/2(zf) d3r

+
3
2

( mb

2π~2

)3/2

β−5/2

∫
g5/2(zb) d3r

+
∫
V b

ext(r) (nc(r) + nnc(r)) d3r

+
∫
V f

ext(r)nf(r) d3r

+
gbb

2

∫ (
n2

c(r) + 2n2
nc(r) + 4nc(r)nnc(r)

)
d3r

+ gbf

∫
(nc(r) + nnc(r))nf(r) d3r (6)

where fp(z) = Γ (p)−1
∫
yp−1 dy/(z−1ey + 1), gp(z) =

Γ (p)−1
∫
yp−1 dy/(z−1ey−1) are the usual Fermi and Bose

functions and zf,b = exp(β(µf,b−V f,b
eff (r))). The release en-

ergy is obtained by setting the confinement potentials V b,f
ext

in equation (6) to zero. This quantity can be measured via
time-of-flight experiments.

At low temperature the thermal component nnc can
be safely neglected in the right hand side of equa-
tions (1, 4, 5). Similarly, when the fermionic density nf

is much smaller than the density nc of the Bose conden-
sate, its contribution in the right hand side of the same
equations can be dropped. This is valid, for example, if the
interaction strengths gbf and gbb have comparable size and
if the trapping potential V f

ext is not too stiff with respect
to V b

ext. In this case the density profile of the condensate is
not affected by the interaction with the fermions and the
effective potential felt by the fermions takes the simplified
form:

V f
eff(r) =


1
2
mfω

2
f (1− γ)r2 +

gbf

gbb
µb for r < Rb

1
2
mfω

2
f r

2 for r ≥ Rb

(7)

where

γ =
gbf

gbb

mbω
2
b

mfω2
f

(8)

and Rb = (2µb/mbω
2
b)1/2 is the radius of the condensate

cloud. The potential (7) depends on temperature through
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the boson chemical potential µb, which determines the ra-
dius Rb. Full numerical calculations, including the contri-
bution of the thermal Bose and Fermi components, show
that this simplified model (hereafter called the double-
parabola model) describes very well the main features
of the system below the critical temperature for Bose-
Einstein condensation.

In the double-parabola model, if the parameter γ in
equation (8) is smaller than unity, the potential felt by the
fermions has its minimum in the center of the trap. In this
situation two limiting cases can be envisaged by compar-
ing Rb with the radius of the Fermi cloud. This is approx-
imatively given by the Fermi radius RF = (2EF/mfω

2
f )1/2

calculated in the absence of interactions, where EF =
(6Nf)1/3~ωf is the Fermi energy. In the limit Rb � RF

the number of bosons is much smaller than the number
of fermions and thus the interactions play a minor role.
Instead, in the limit Rb � RF the fermionic cloud feels
a harmonic trapping potential with a renormalized fre-
quency ω̃f = ωf(1−γ)1/2. Finally in the case γ > 1 the re-
pulsive interaction with the bosons is stronger than the ex-
ternal potential. The effective potential (7) then exhibits
a local maximum at the center of the trap.

3 Scaling and role of the interactions
at T = 0

Let us begin our discussion in the framework of the double-
parabola model introduced in the previous section. In the
case γ < 1 we can give a simple approximate solution
of the model by a variational minimization of the energy
functional in equation (6). At T = 0 this reads

E(T = 0) =
3
5
~2

2mf
(6π2)2/3

∫
n

5/3
f (r) d3r

+
∫
V b

ext(r)nc(r) d3r +
∫
V f

ext(r)nf (r) d3r

+
gbb

2

∫
n2

c(r) d3r + gbf

∫
nc(r)nf(r) d3r. (9)

The variational approach (see the details in the Appendix)
explicitly shows that the relevant properties of the system
depend on the various parameters of the model through
two adimensional combinations, which are the parameter
γ in equation (8) and a parameter x given by

x =
√
Rb

RF
=
√

mfωf

2mbωb

(
15abb

aho

Nb

(6Nf)5/6

)1/5

. (10)

At given γ, the ratio of the sizes of the two clouds in the
absence of interactions determines the deviation of the
kinetic energy of the Fermi component from its ideal-gas
value.

We have checked numerically that the scaling in these
two variables is satisfied with good accuracy also by the
full numerical solution of equations (1–5) at zero tempera-
ture for any value of γ. The description of the system with

Fig. 1. Kinetic energy of the Fermi component in units of
E0

kin = 3NfEF/8 as a function of the scaling parameter x for
different values of γ; (a) for γ < 1 taking the following values:
γ = 0.9 (short dahses), γ = 0.5 (dots), γ = 0.1 (solid), γ =
−0.1 (long dashes), γ = −0.5 (dot-short dashes) and γ = −0.9
(dot-long dashes); (b) for γ > 1 ranging from γ = 1.1 (solid
curve) to γ = 1.7 (long dashed curve) in steps of 0.2.

only two scaling parameters instead of the eight original
ones entering equations (1–3) represents a major simpli-
fication of the problem. In view of this property, in the
following we shall present our discussion in terms of the
scaling parameters x and γ.

In Figure 1a we show a plot of the kinetic energy as
a function of x at zero temperature for different values of
γ < 1. As x increases, the kinetic energy of the fermions
goes from its non-interacting value E0

kin = 3NfEF/8 to
the strong-coupling limit Ẽkin = E0

kin(1− γ)1/2. As a first
result of our analysis we see from Figure 1a that there
is a clear correspondence, for a fixed value of x, between
the value of the kinetic energy and the value of γ. There-
fore the sign and the strength of the ratio between the
boson-fermion and boson-boson coupling constants could
be inferred from a measurement of the fermion kinetic en-
ergy.

In the case γ > 1 the fermions are expelled from the
center of the trap [19,22] and form a shell around the
bosons as Nb increases with respect to Nf . In this case
the kinetic energy of the fermions (Fig. 1b) tends to zero
when x→∞.

For completeness we have also analyzed the behaviour
of the mean square radius of the fermionic cloud as a func-
tion of x. For γ < 1 the asymptotic value at large x is
larger (smaller) than in the ideal case for γ > 0 (< 0)
(see Fig. 2a). For γ > 1 the mean square radius increases
indefinitely with increasing x (Fig. 2b). These behaviours
are immediately understood in terms of the behaviour of
the kinetic energy shown in Figure 1.

4 The role of temperature

Let us finally examine the temperature dependence of
the kinetic energy of the Fermi gas. To this purpose we
have solved self-consistently the full set of equations (1–5).
Of course, in the classical regime the kinetic energy is
insensitive to interactions. As quantum degeneracy sets
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Fig. 2. Mean square radius of the Fermi component in units
of 〈r2〉0 = 3NfR

2
F/8 as a function of the scaling parameter

x for different values of γ; (a) same values and notations as
in Figure 1a except for the value γ = 0.7 (long dashes–short
dashes) which replaces the value γ = 0.9 of Figure 1a; (b) for
γ > 1, ranging from γ = 1.1 (solid curve) to γ = 1.7 (long
dashed curve) in steps of 0.2.

Fig. 3. Kinetic energy of the Fermi component as a function
of the reduced temperature T/TF for a choice of the scaling
parameters corresponding to mf = mb = 39 a.u., ωf = ωb =
2π × 100 s−1, Nf = 104, Nb = 106, abb = 92a0 and abf =
46a0 where a0 is the Bohr radius. The solid curve refers to the
interacting system and the dashed line to the non-interacting
one. The dotted curve shows the classical result.

in at T < TF, where TF = EF/KB is the Fermi tem-
perature, deviations from the classical value 3NfKBT/2
become apparent. We show in Figure 3 the predicted
behaviour for a given choice of the parameters of the mix-
ture. The role of the interactions decreases as temperature
increases. This can also be seen in Figure 4 where we plot
the kinetic energy as a function of x for a choice of differ-
ent temperatures.

The scaling behaviour described in Section 3 is less
accurate at finite temperature. This is easily understood
from the fact that the approximations leading to equa-
tion (7) become less justified as temperature increases.

5 Conclusions

We have presented a broad study of the kinetic en-
ergy of the fermionic component in a mixture of bosons
and fermions in the so-called Thomas-Fermi regime

Fig. 4. Kinetic energy of the Fermi component as a function of
the scaling parameter x for γ = 0.5 at different temperatures,
as indicated in the figure.

(Nbabb/aho � 1). We have shown that at zero temper-
ature the kinetic energy, as well as the mean square ra-
dius of the Fermi component, exhibit an important scaling
behaviour in the relevant parameters γ and x defined in
equations (8, 10). This has allowed us to give a system-
atic investigation of these physical properties on a wide
range of system parameters and to understand the role
of the interactions between the Fermi gas and the Bose
condensate.

In particular, we have found that the shift of the
fermionic kinetic energy due to the interactions becomes
sizeable at appreciable values of the parameter x measur-
ing the relative radii of the two clouds. This effect could
be used to infer the sign of the boson-fermion scattering
length from measurements of the fermion kinetic energy.

Finally, the role of temperature has been investigated
within the self-consistent numerical solution of the full set
of equations for the coupled boson-fermion mixture and
the interplay between thermal and interaction effects on
the kinetic energy has been demonstrated.

This work is supported by the Istituto Nazionale per la Fisica
della Materia through the Advanced Research Project on BEC.
One of us (L.V.) acknowledges the hospitality of the Scuola
Normale Superiore di Pisa during part of this work.

Appendix A: Variational model

The scaling behaviour discussed in Section 3 can be ex-
plicitly predicted by a variational approach which turns
out to be very accurate in reproducing the numerical re-
sults at T = 0 in the case γ < 1. The variational method
is based on the minimization of the energy functional (9)
within a restricted class of functions.

For γ < 1 it is convenient to describe the fermionic
cloud as if it were embedded in an effective potential
Vvar(r) = mfω

2
varr

2/2, where the frequency ωvar is a
variational parameter. The corresponding fermionic
density profile is nf(r) = 1/(6π2)(2mf/~2)3/2(Evar

F −
mfω

2
varr

2/2)3/2 and the expression for the variational
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energy functional takes the form

Evar = Ekin +Eho +Eint =
3
8
NfEF

ωvar

ωf
+

3
8
NfEF

ωf

ωvar

+
gbf

gbb

∫ min(Rvar
F ,Rb) 1

6π2

(
2mf

~2

)3/2

×
(
Evar

F − 1
2
mfω

2
varr

2

)3/2 (
µb −

1
2
mbω

2
br

2

)
d3r.

(A.1)

Here Evar
F = (6Nf)1/3~ωvar and Rvar

F = (2Evar
F /mfω

2
var)1/2

are the the Fermi energy and the Fermi radius calculated
with the frequency ωvar. The bosons are described by
the Thomas-Fermi inverted parabola nb(r) = g−1

bb (µb −
mbω

2
br

2/2) with µb = ~ωb(15Nbabb/aho)2/5/2.
The integral in equation (A.1) can be carried out

analytically, with the result

Evar(x, γ, α) =
3
8
NfEF

×


α2

x2
+
x2

α2
+ γ

x2

α2
P (α) for α < 1

α2

x2
+
x2

α2
+ γ

x2

α2

(
−1 +

8
3
α2

)
for α ≥ 1

(A.2)

where α2 = x2ωvar/ωf and

P (α) =
2

9π

[
α
√

1− α2(9− 18α2 + 40α4 − 16α6)

+ 3(−3 + 8α2) arcsin(α)
]
, (A.3)

x =
√

mfωf

2mbωb

(
15
abb

aho

Nb

(6Nf)5/6

)1/5

. (A.4)

The condition ∂Evar/∂α = 0 determines the value of α
and hence of ωvar. This equation has to be solved numer-
ically, except for α ≥ 1 where the model gives the result
ωvar = ω̃f .

The expression (A.2) allows an explicit identification
of the scaling variables introduced in Section 3. In fact,
the quantity Evar/NfEF at its minimum depends only on
x and γ.

Of course the variational estimate gives an upper
bound for the total energy. This bound is very close to
the value obtained by solving the Schrödinger equation
with the potential (7). Typical deviations are less than
1% of the energy.
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